Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
3.
Front Med (Lausanne) ; 8: 690523, 2021.
Article in English | MEDLINE | ID: covidwho-1438418

ABSTRACT

Objectives: The longitudinal characterization and risk of poor outcomes related to cytokine overproduction in critical coronavirus disease 2019 (COVID-19) patients with hyperinflammation in bronchoalveolar lavage requires further investigation. Methods: We enrolled two critically ill patients with comorbidities diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detected by RT-PCR during hospitalization. Clinical characteristics, longitudinal immunological, and biochemical parameters of each critical COVID-19 case were collected. Main Results: The clinical characteristics and laboratory results of each case demonstrated critical symptoms of COVID-19 with poor outcomes. Both nasopharyngeal swabs and bronchoalveolar lavage fluid (BALF) samples tested positive for SARS-CoV-2. Two patients received targeted treatments against pathogen infection and inflammation in addition to interventional therapies, except for Patient 2, who received an additional artificial liver system treatment. Hyperinflammation with a dominantly high level of IL-6 was observed in BALF samples from both critical cases with decreased T cell populations. High levels of cytokines and pathological parameters were successively maintained in Patient 1, but rapidly reduced at the late treatment stage in Patient 2. The outcome of Patient 1 is death, whereas the outcome of Patient 2 is recovery. Conclusions: This case report suggests that a high risk of poor outcomes was related to a heavily hyperinflammatory milieu in both the blood and lungs of critical COVID-19 patients. The artificial liver intervention on cytokines overproduction might be beneficial for the recovery of critical COVID-19 patients as a reliable therapy that can be coordinated with targeted treatments, which ought to be further tested in adequately designed and powered clinical trials.

4.
J Virol ; 95(17): e0074721, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1356909

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is bringing an unprecedented health crisis to the world. To date, our understanding of the interaction between SARS-CoV-2 and host innate immunity is still limited. Previous studies reported that SARS-CoV-2 nonstructural protein 12 (NSP12) was able to suppress interferon-ß (IFN-ß) activation in IFN-ß promoter luciferase reporter assays, which provided insights into the pathogenesis of COVID-19. In this study, we demonstrated that IFN-ß promoter-mediated luciferase activity was reduced during coexpression of NSP12. However, we could show NSP12 did not affect IRF3 or NF-κB activation. Moreover, IFN-ß production induced by Sendai virus (SeV) infection or other stimulus was not affected by NSP12 at mRNA or protein level. Additionally, the type I IFN signaling pathway was not affected by NSP12, as demonstrated by the expression of interferon-stimulated genes (ISGs). Further experiments revealed that different experiment systems, including protein tags and plasmid backbones, could affect the readouts of IFN-ß promoter luciferase assays. In conclusion, unlike as previously reported, our study showed SARS-CoV-2 NSP12 protein is not an IFN-ß antagonist. It also rings the alarm on the general usage of luciferase reporter assays in studying SARS-CoV-2. IMPORTANCE Previous studies investigated the interaction between SARS-CoV-2 viral proteins and interferon signaling and proposed that several SARS-CoV-2 viral proteins, including NSP12, could suppress IFN-ß activation. However, most of these results were generated from IFN-ß promoter luciferase reporter assay and have not been validated functionally. In our study, we found that, although NSP12 could suppress IFN-ß promoter luciferase activity, it showed no inhibitory effect on IFN-ß production or its downstream signaling. Further study revealed that contradictory results could be generated from different experiment systems. On one hand, we demonstrated that SARS-CoV-2 NSP12 could not suppress IFN-ß signaling. On the other hand, our study suggests that caution needs to be taken with the interpretation of SARS-CoV-2-related luciferase assays.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , Interferon-beta , Promoter Regions, Genetic , SARS-CoV-2 , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , HEK293 Cells , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/antagonists & inhibitors , Interferon-beta/biosynthesis , Interferon-beta/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
5.
Microbiol Spectr ; 9(1): e0016921, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1270881

ABSTRACT

Nonstructural protein 1 (Nsp1) of severe acute respiratory syndrome coronaviruses (SARS-CoVs) is an important pathogenic factor that inhibits host protein translation by means of its C terminus. However, its N-terminal function remains elusive. Here, we determined the crystal structure of the N terminus (amino acids [aa] 11 to 125) of SARS-CoV-2 Nsp1 at a 1.25-Å resolution. Further functional assays showed that the N terminus of SARS-CoVs Nsp1 alone loses the ability to colocalize with ribosomes and inhibit protein translation. The C terminus of Nsp1 can colocalize with ribosomes, but its protein translation inhibition ability is significantly weakened. Interestingly, fusing the C terminus of Nsp1 with enhanced green fluorescent protein (EGFP) or other proteins in place of its N terminus restored the protein translation inhibitory ability to a level equivalent to that of full-length Nsp1. Thus, our results suggest that the N terminus of Nsp1 is able to stabilize the binding of the Nsp1 C terminus to ribosomes and act as a nonspecific barrier to block the mRNA channel, thus abrogating host mRNA translation.


Subject(s)
SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , COVID-19 , Crystallography, X-Ray , HEK293 Cells , Humans , Protein Biosynthesis , Protein Conformation , Protein Domains , RNA, Messenger , Sequence Analysis, Protein , Viral Nonstructural Proteins/metabolism
6.
mSphere ; 6(2)2021 04 21.
Article in English | MEDLINE | ID: covidwho-1197234

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in December 2019. To investigate the prevalence of COVID-19 in Wuhan, we conducted serologic tests on 35,326 individuals from four different communities to estimate cumulative incidence of infection. Our results showed that 1,332 individuals (3.77%) showed positive COVID-19 antibody (either IgM or IgG). Males had a lower positivity rate than females (3.02% versus 4.52%). The antibody positivity rates showed a clear trend of increase according to patients' ages and varied among different communities. The results indicate that public health interventions may play important roles in the control of COVID-19.IMPORTANCE Coronavirus disease 2019 (COVID-19) was first detected in December 2019 in Wuhan, China. Afterwards, a number of public health interventions were implemented, including lock-down, face mask ordinances, and social distancing. Studies that rely on viral RNA testing of symptomatic patients have shown that these multifaceted interventions contributed to the control of the COVID-19 outbreak in Wuhan and delayed the epidemic's progression. However, these estimates of confirmed cases may miss large numbers of asymptomatic patients and recovered symptomatic patients who were not tested. To investigate the prevalence of COVID-19 in Wuhan, we conducted serologic tests on 35,326 individuals to estimate the cumulative incidence of infection. The results suggest that public health interventions may play important roles in the control of COVID-19.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Serological Testing , Child , Child, Preschool , China/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Incidence , Male , Middle Aged , Pandemics , SARS-CoV-2/immunology , Seroepidemiologic Studies , Time Factors , Young Adult
7.
Int J Environ Res Public Health ; 18(6)2021 03 19.
Article in English | MEDLINE | ID: covidwho-1148298

ABSTRACT

Lack of knowledge around seroprevalence levels of COVID-19 in Poland was the reason for the implementation of a seroepidemiological study in the Katowice Region (2,100,000 inhabitants). In October-November 2020, a questionnaire examination and measurement of anti-SARS-CoV-2 IgG and IgM antibodies were performed in a random sample of the general population (n = 1167). The objectives of the study were to estimate the prevalence of IgG and IgM antibodies and to assess their host-related correlates. The prevalence of IgG seropositivity was 11.4% (95% CI: 9.5-13.2%) and IgM seropositivity was 4.6% (95% CI: 3.5-5.8%). Diagnosis of COVID-19 was found in 4.8% of subjects. A positive IgG test was statistically significantly associated with age (inverse relationship), a person's contact with a COVID-19 patient, quarantine, and two symptoms in the past: fever and loss of smell/taste. Positive IgG tests were less prevalent in subjects who had diagnoses of arterial hypertension, diabetes, or rheumatologic disorders. IgM test positivity was associated with quarantine and loss of smell/taste only with no effect of chronic diseases found. In Poland, in the period October-November 2020, the prevalence of SARS-CoV-2 infection was larger than earlier estimates obtained in other European countries, probably reflecting the measurements obtained during the "second wave" of the epidemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Europe , Humans , Immunoglobulin M , Poland/epidemiology , Seroepidemiologic Studies
8.
Liver International ; 41(4):i, 2021.
Article in English | ProQuest Central | ID: covidwho-1138203

ABSTRACT

The cover image is based on the Original Article Clinical characteristics of COVID‐19 patients with hepatitis B virus infection — a retrospective study by Rui Liu et al., https://doi.org/10.1111/liv.14774.

9.
Liver Int ; 41(4): 720-730, 2021 04.
Article in English | MEDLINE | ID: covidwho-991633

ABSTRACT

BACKGROUND & AIMS: The outbreak of coronavirus disease 2019 (COVID-19) has been declared a pandemic. Although COVID-19 is caused by infection in the respiratory tract, extrapulmonary manifestations including dysregulation of the immune system and hepatic injury have been observed. Given the high prevalence of hepatitis B virus (HBV) infection in China, we sought to study the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HBV coinfection in patients. METHODS: Blood samples of 50 SARS-CoV-2 and HBV coinfected patients, 56 SARS-CoV-2 mono-infected patients, 57 HBeAg-negative chronic HBV patient controls and 57 healthy controls admitted to Renmin Hospital of Wuhan University were collected in this study. Complete blood count and serum biochemistry panels including markers indicative of liver functions were performed. Cytokines including IFN-γ, TNF-α, IL-2, IL-4, IL-6 and IL-10 were evaluated. T cell, B cell and NK cell counts were measured using flow cytometry. RESULTS: SARS-CoV-2 and HBV coinfection did not significantly affect the outcome of the COVID-19. However, at the onset of COVID-19, SARS-CoV-2 and HBV coinfected patients showed more severe monocytopenia and thrombocytopenia as well as more disturbed hepatic function in albumin production and lipid metabolism. Most of the disarrangement could be reversed after recovery from COVID-19. CONCLUSIONS: While chronic HBV infection did not predispose COVID-19 patients to more severe outcomes, our data suggest SARS-CoV-2 and HBV coinfection poses a higher extent of dysregulation of host functions at the onset of COVID-19. Thus, caution needs to be taken with the management of SARS-CoV-2 and HBV coinfected patients.


Subject(s)
COVID-19/complications , Hepatitis B, Chronic/complications , Adult , COVID-19/blood , COVID-19/immunology , Coinfection , Erythrocyte Count , Female , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/immunology , Humans , Liver Function Tests , Male , Platelet Count , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
10.
mSphere ; 5(5)2020 10 07.
Article in English | MEDLINE | ID: covidwho-841943

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread around the world. Persons with asymptomatic disease exhibit viral shedding, resulting in transmission, which presents disease control challenges. However, the clinical characteristics of these asymptomatic individuals remain elusive. We collected samples of 25 asymptomatic and 27 symptomatic COVID-19 patients. Viral titers of throat swabs were determined by quantitative reverse transcription-PCR (qRT-PCR). COVID-19 IgG and IgM were examined. Complete blood counts were determined, and serum biochemistry panels were performed. Cytokines, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2), IL-4, IL-6, and IL-10 were evaluated. T cell, B cell, and NK cell counts were measured using flow cytometry. Although similar viral loads were detected, asymptomatic patients had significantly faster virus turnover than symptomatic patients. Additionally, asymptomatic patients had higher counts of lymphocytes, T cells, B cells, and NK cells. While liver damage was observed in symptomatic patients, as indicated by elevated liver enzymes and decreased liver-synthesized proteins in the blood, asymptomatic patients showed normal liver measurements. Lactate dehydrogenase, a COVID-19 risk factor, was significantly lower in asymptomatic patients. These results suggest that asymptomatic COVID-19 patients had normal clinical indicators and faster viral clearance than symptomatic patients. Lymphocytes may play a role in their asymptomatic phenotype. Since asymptomatic patients may be a greater risk of virus transmission than symptomatic patients, public health interventions and a broader range of testing may be necessary for the control of COVID-19.IMPORTANCE Asymptomatic transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a potential problem for pandemic control through public health strategies. Our results demonstrate that asymptomatic COVID-19 patients have better outcomes than symptomatic patients. This may have been due to more active cellular immune responses and normal liver function. Since asymptomatic patients have no clinical symptoms which can easily prevent timely diagnosis and treatment, they may cause a greater risk of virus transmission than symptomatic patients, which poses a major challenge to infection control. Evidence suggests that nonpharmaceutical public health interventions, like social distancing and face mask ordinances, play important roles in the control of COVID-19. Looking forward, it may be necessary to proceed cautiously while reopening businesses in areas of epidemicity to prevent potential waves of COVID-19 in the future.


Subject(s)
Asymptomatic Infections , Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Betacoronavirus/isolation & purification , Biomarkers/blood , COVID-19 , COVID-19 Testing , Case-Control Studies , China , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Retrospective Studies , SARS-CoV-2 , Virus Shedding
12.
Emerg Microbes Infect ; 9(1): 1123-1130, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-457402

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread across many other countries. While the majority of patients were considered mild, critically ill patients involving respiratory failure and multiple organ dysfunction syndrome are not uncommon, which could result death. We hypothesized that cytokine storm is associated with severe outcome. We enrolled 102 COVID-19 patients who were admitted to Renmin Hospital (Wuhan, China). All patients were classified into moderate, severe and critical groups according to their symptoms. 45 control samples of healthy volunteers were also included. Inflammatory cytokines and C-Reactive Protein (CRP) profiles of serum samples were analyzed by specific immunoassays. Results showed that COVID-19 patients have higher serum level of cytokines (TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-10) and CRP than control individuals. Within COVID-19 patients, serum IL-6 and IL-10 levels are significantly higher in critical group (n = 17) than in moderate (n = 42) and severe (n = 43) group. The levels of IL-10 is positively correlated with CRP amount (r = 0.41, P < 0.01). Using univariate logistic regression analysis, IL-6 and IL-10 are found to be predictive of disease severity and receiver operating curve analysis could further confirm this result (AUC = 0.841, 0.822 respectively). Our result indicated higher levels of cytokine storm is associated with more severe disease development. Among them, IL-6 and IL-10 can be used as predictors for fast diagnosis of patients with higher risk of disease deterioration. Given the high levels of cytokines induced by SARS-CoV-2, treatment to reduce inflammation-related lung damage is critical.


Subject(s)
Coronavirus Infections/diagnosis , Interleukin-10/blood , Interleukin-6/blood , Pneumonia, Viral/diagnosis , Betacoronavirus , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19 , China , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Critical Illness , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Cytokines/blood , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL